

TITLE: SDV AN OPEN-SOURCE HARDWARE: A PERFECT MATCH FOR INNOVATION

Philippe Cuenot, Aumovio

Etienne Hamelin, CEA-LIST

The authors would like to thank **Christian Fabre (CEA)**, **Olivier Sentieys (INRIA)** and **Albert Cohen (Google)** for their valuable time dedicated in sharing their opinion and vision on the open-source hardware topic

Scope of the WG study

Identify where current hardware research and academic activities can bring value on hardware component of electronic control unit for SDV needs

SWOT analysis on open-source hardware

Agenda

- Automotive context
- RISC-V context and open-source hardware
- SWOT analysis on RISC-V open-source hardware
- Conclusion

Toward the Software Defined Vehicle and hardware innovation

- Impact of Centralized/Zonal architecture
 - High Performance Computer architecture moves to scientific
 - Many core processors, cluster organization
 - Al accelerators and also crypto, communication and I/O
 - Computing efficiency and energy consumption via state and freq. control
- Challenges to be solved (ECS RIA¹)
 - Advanced computing, memory, and in-memory computing concepts
 - Novel devices and circuits that enable advanced functionality
- Key Initiatives
 - European Processor Initiative (EPI)
 - RISC-V and Open-Source Hardware as key ingredients

Unveiling the Transformation of Software-Defined Vehicles

In-Car
High Performance Computer

Central
Compute

TSN
Switch
Switch

Zonal
Gateway

Actuators

¹ Electronic Components and Systems Strategic Research and Innovation Agenda, available at https://ecssria.eu/

A brief history

2016: SoftBank acquires ARM

Since 2019: US/China trade wars

RISC-V Foundation

RISC-V®

OSHWA

2020: NVidia attempts to buy ARM

Since 2022: LLMs boom

2023: **EU Chips Act**

geopolitical IDM & context

> ecosystem RISC-V

arm

1990-2010: quasi-duopoly on instruction sets

2015:

2019:

OpenHW Group

2023: **RISC-V Software** Ecosystem (Linux Foundation Europe)

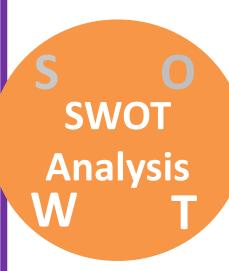
2010: creation of the RISC-V ISA

RISC-V ecosystem

	Open-source solution examples	Commercial offer examples
Application	Application-specific software	
Operating system, libraries	Linux, FreeRTOS, Zephyr	VxWorks, QNX, PikeOS
Compilers, tools	GCC, clang/LLVM	IAR Workbench
Simulator / emulator	QEMU, Spike	AST/Vlab, Synopsis
Instruction set and extensions	RISC-V : a scalable family of ISA	
Core design	Berkeley Rocket, Boom, ETH PULP Western Digital SweRV Core	SiFive, XuanTie, Andes
IPs: memory controller, interconnect, GPU / NPU accelerators, peripherals	OpenWH Group labeled IPs	Synopsis, Arteris IP
Process design kit	Google Skywater PDK, eFabless	GlobalFoundries, TSMC
Foundry		
SoC packaging	Not free & open-source !	HiFive Freedom U540 SoC, Espressif ESP32-C

Open-Source Hardware and Business Model

- Open-source hardware to favor innovation and open collaboration
 - Inspiration from the success of open-source software
 - Slow adoption due to current closed IP business model
 - Only RISC-V ISA is open-source and software tools (compilers, simulators..)
 - RISC-V complete system is not open
 - Some open-source RISC-V platforms exists (maturity, performance to be assessed)
 - EU found open-source collaborative project (Chips-JU umbrella)
- New business model for hardware under maturation
 - Initiated by Academic and Industrial collaboration (3rd party funding)
 - Next step Product-Service mix under progress with the hypothesis of a dynamic ecosystem
 - Then corporate competences (design, manufacturing, expertise) to be set-up
 - To reach platform model (membership, matchmaking) and distributed enterprise (license, certify)



SWOT on Open-Source Hardware

WEAKNESSES

- Emerging RISC-V market
 - Low penetration in automotive and IoT market
- Reluctance of automotive industry players
 - Open-source hardware is recent
 - Reliability and safety maturation needed
- Current computing performance
 - Gaps in current RISC-V performance
- Non-standardized memory model
 - Interconnect, cache, pipeline, optimization...
- Maturity level on reliability
 - IP/mechanism gaps for ASIL-D application
- Incomplete solution for Al accelerators
 - No GPU, NPU and gaps in SW toolchain
- Risk on emerging solutions for HPC
 - Geopolitical situation for CH and US

THREATS

- Unclear business model for open hardware
 - Complex, uncertain and not established
 - Liability issues
- Competitiveness of EU
 - R&D invest gap with CH & US (capital found)
- Unbalanced public support in EU
 - RISC-V is strategic for China
 - US pioneering and large company committed
- Sovereignty for open source and ITAR rules
 - Access of technology by CH (US Government)
- Rare and valuable hardware skills
 - High demand on talent with difficult recruiting
- Security risk on open-source code
 - Entry point for malicious code (Trojan)
 - To be balanced with mature automotive process

SWOT on Open-Source Hardware

STRENGTHS

- Open hardware collaboration model
 - share designs and resources
 - accelerates innovation through open collab.
- Open marked for hardware accelerators
 - Specialized IPs implementing instr. extension
- · Reinforce research and innovation
 - free access to open resources facilitating experimentation.
 - Connecting to academic experts
- Facilitate hardware-software co-design
 - Adaptation and optimization with automation
- Financial support from the EC and national bodies
 - R&D initiatives: Chips-JU, EuroHPC, etc
- EU Competence and IP Design ecosystem
 - Fabless and SoC suppliers

OPPORTUNITIES

- Diversification versus major semiconductor player
 - Growing market of IA accelerators
- Collaboration with China
 - Numerous academic collaborations on HPC
- Opportunities for French and EU Players
 - Research Infrastructure and collaboration
 - Active IA, ioT, Cybersecurity market
- Efficiency Brought by Technology
 - Design small size CPU with power efficiency
- Contribution of Safety knowledge expertise
 - Differentiation in derived commercial solutions
- Designing software stacks and tools
 - Extension of freely available solutions
- Chiplet as a catalyst for this technology
 - Automotive industry is very active here

Conclusion

Open-source hardware

Deploying RISC-V Core System and Accelerators

- Enforce sovereignty and market resilience, mitigate risk of concentration on single source
- Enabler of commercial exploitation issued from base impl. on non-competitive topics
- Opportunity for heterogeneous architecture to meet the needs of embedded HPC for SDV

Recommendation

- Survey the RISC-V market (very active)
- Adopt a progressive approach based on working groups to identify opportunities
- Engage automotive industrials in R&D open ecosystem to accelerate maturation
- Collaborate with academics to accelerate innovation
- Healthy competition on performance of core processing systems and accelerators
- Get involved in standardization for the automotive sector

MOVING FORWARD TOGETHER*

*PROGRESSONS ENSEMBLE

THANK YOU FOR YOUR ATTENTION

<u>liliana.cucu@inria.fr</u>

etienne.hamelin@cea.fr

philippe.cuenot@aumovio.com

The original white paper is available on SIA Website

Société des Ingénieurs de l'Automobile 2, rue de Presbourg • 75008 Cedex • France