Laboratoire Roberval

Matthieu Bricogne, matthieu.bricogne@utc.fr

Atelier SIA - les méthodes Agiles et le monde automobile

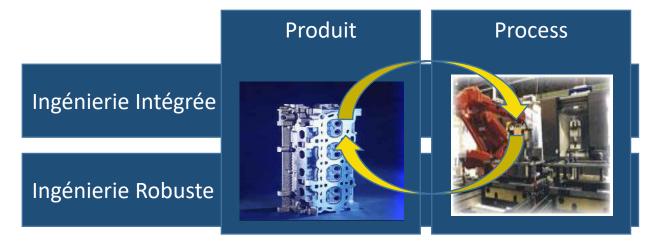
_

Les challenges relatifs à l'introduction de l'agilité dans les industries manufacturières

Présentation

Présentation Matthieu Bricogne - Enseignant

 Université de Technologie de Compiègne - Département Ingénierie Mécanique



- Domaines d'enseignement : CAO, Ingénierie Système, Knowledgeware, Ingénierie collaborative PLM
- Responsable de la filière Conception mécanique Intégrée
 - Bureau d'études
 - Analyse, modélisation, dimensionnement et intégration géométrique
 - Mécatronique
 - Intégration de capteurs, actionneurs, réalisation des modules de contrôle / commande et logiciels
 - Ingénierie industrielle
 - Spécification et mise en œuvre de méthodes et outils pour supporter le processus collaboratif de conception

Présentation Matthieu Bricogne – Chercheur en Génie Industriel

- Membre de l'équipe « **Systèmes Intégrés Produit-Process** » du laboratoire **Roberval** composée de 12 Enseignants Chercheurs
 - Objectif scientifique : proposer des méthodes et des modèles pour une approche intégrée du couple produit-process et la maîtrise de leur robustesse

- Thématiques de recherche
 - Conception collaborative multidisciplinaire
 - PLM pour systèmes mécatroniques
 - ⇒ Proposer des processus/méthodes/outils pour faire collaborer des experts issus proposant des expertises « hétérogènes » pour concevoir des systèmes complexes

Pourquoi l'agilité?

D'où viennent les « méthodes agiles » ? De quoi parle-t-on ?

Pourquoi l'agilité?

- Intérêt pour l'agilité depuis 2009 pour faciliter l'intégration des expertises
 - Intégration des activités d'ingénierie

[Bricogne, 2015]

- Intégration des disciplines

Act. d'ingénierie	Architecture	Conception /	Calculs / Tests	Méthodes /	Draduation	
Disciplines	système	Développement	Calculs / Tests	Industrialisation	Production	•••

X ← chaque case correspond à une expertise

- Pourquoi?
 - Dynamique des échanges
 - Logique ascendante **bottom-up**

Pourquoi l'agilité ?

- Travaux alimentés par des constats :
 - Conception organisée « par projet » avec un pilotage basé sur la mesure des écarts par rapport aux référentiels du projet :
 - Répartition des tâches (Work Breakdown Structure WBS)
 - Structure du produit (*Product Breakdown Structure* PBS)
 - Organisation du projet (*Organisation Breakdown Structure* OBS)

[Gidel et Zonghero, 2020]

- Des référentiels définis a priori et tout écart est considéré comme un problème/échec
- Gestion client / fournisseurs gestion des responsabilités : formalisme à outrance
- ⇒Utilisation de *project-planned* ou « méthodes prédictives »
- Et un ressenti « mou »
 - Perte de sens pour les acteurs
 - Manque de liberté / autonomie

Historiquement, les méthodes agiles...

- La logique : "the ability to react rapidly to changes in the environment, whether expected or not"

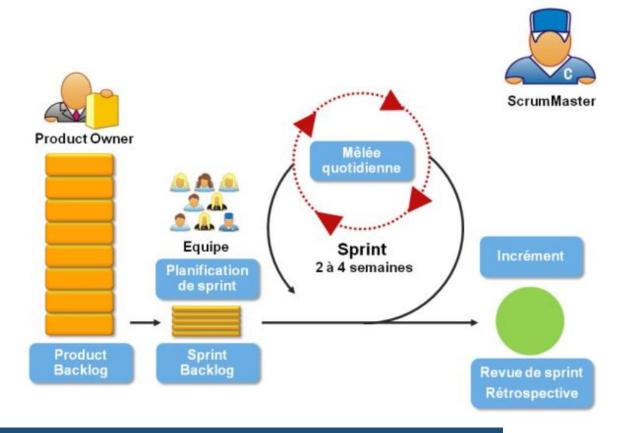
[Sommer et al., 2014]

- Issues du **développement logiciel** mais concepts également présents dans le domaine "manufacturing"

[Matthews et al., 2006]

[Moreau, 2020]

- Quelques méthodes bien connues, avec leurs **spécificités** et leur **folklore**...
 - Scrum


[Schwaber and Beedle, 2001]

- eXtreme Programming (XP)

[Beck, 2000]

- Crystal
- ...

La plus connue et la plus emblématique : Scrum

Quelques éléments de « folklore » ? Les outils généralement retenus...

- Timeboxing

- découpage en itérations : durée fixe
- court terme (< 1 mois)
- Évaluation de chaque itération à la fin et réajustement du plan de travail

- **Product backlog** (reste à faire)

- liste des besoins exprimés, par exemple sous forme fonctionnelle
- avant chaque timebox le product backlog sert d'outil d'arbitrage

- User stories

- description simple d'un besoin ou d'une attente exprimée par un utilisateur
- En tant que <qui>, je veux <quoi> afin de <pourquoi>

- Kanban

- suivre la réalisation des tâches de manière visuelle et partagée

- Product Owner

- Représentant du client, il détermine les priorités et orientations
- Responsable de la production et de maintien à jour du carnet de produit

- Scrum Master

- facilitateur dont l'objectif principal est de protéger l'équipe des perturbations extérieures

Les limites des méthodes agiles

Postulats de base	Mots clés associés	
Une seule équipe	distributed	
Équipe de petite taille	large-scale	
Équipe colocalisée	geographically dispersed	
Applicable pour le logiciel	multidisciplinary product development	
	•••	

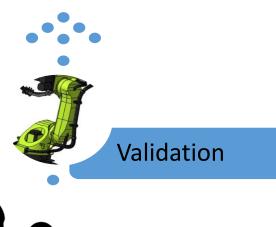
⇒ Que signifie l'application des méthodes agiles à la conception de systèmes dans l'industrie manufacturière ?

Favoriser l'agilité?

Les 3 approches scientifiques menées

Déclinaison des principes fondateurs des méthodes agiles à la conception de produits multidisciplinaires

Première approche


À l'origine, le manifeste agile : 12 principes, 4 grandes idées, 3 points de synthèse...

- En génie logiciel, les méthodes agiles s'appuient toutes sur les 12 principes fondateurs du **Agile Manifesto** (http://agilemanifesto.org/)
 - La collaboration avec le client plus que la contractualisation des relations
 - Les individus et leurs interactions plus que les processus et les outils
 - Des fonctionnalités opérationnelles plus qu'une documentation exhaustive
 - L'adaptation au changement plus que la conformité aux plans

[Messager-Rota, 2007]

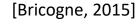
- 3 Points de Synthèse construits par "décontextualisation" + déclinaison relative à la conception de produit:
 - PdS1 : le partage régulier des données de conception
 - PdS2 : l'initiative aux acteurs opérationnels
 - PdS3 : la nécessité de pouvoir bénéficier d'indicateurs opérationnels

Proposition d'un cadre de collaboration basé ces Points de Sythèses

- Illustration de l'articulation des concepts
- Faisabilité technique

Concepts proposés

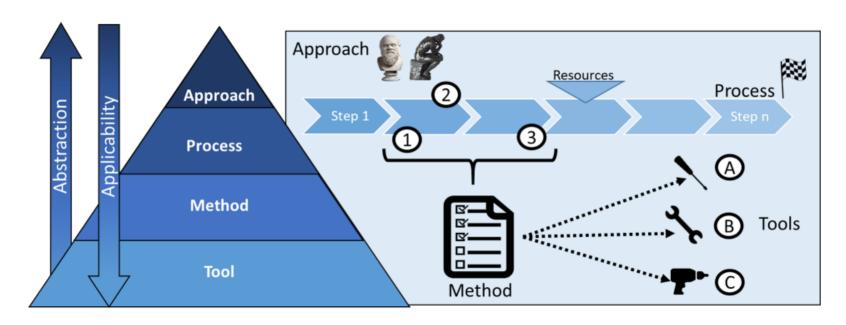
- Collaborative Actions Framework
- Workspaces
- Branch & Merge


Cadre de collaboration

- Méthodologie agile
- bottom-up ET top-down
- Lien décisions/données

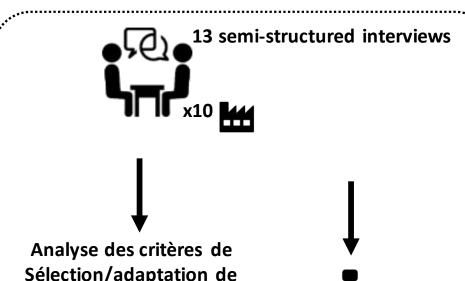
Objectifs

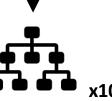
- Améliorer la collaboration
- Remonter des indicateurs opérationnels: bottom-up
- Permettre traçabilité décisions/données
- Cloisonnement entre les disciplines trop important
- Mode d'organisation rigide
- Diffusion de l'information top-down


Recenser les adaptations / hybridations et aider les industriels à sélectionner les concepts et techniques appropriés

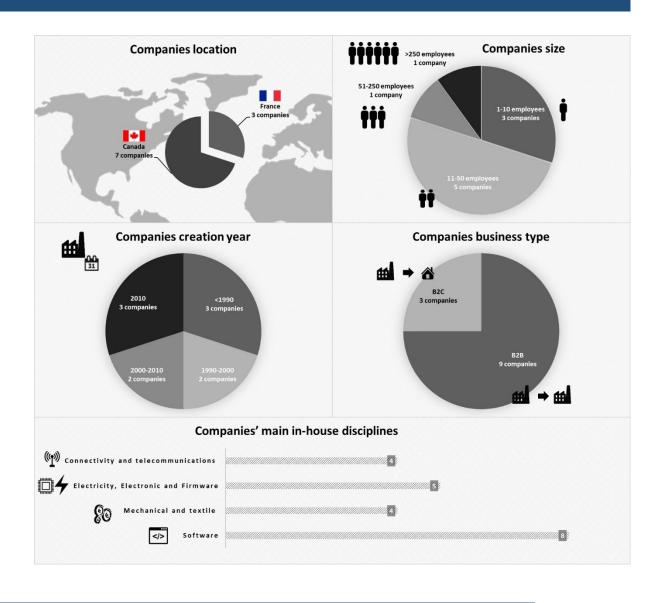
Seconde approche

Pour y voir plus clair: un canevas pour classer les concepts et techniques


- Approche : façon de penser, d'appréhender la conception d'un système
- **Processus** : enchaînement d'étapes, organisées temporellement qui visent à atteindre un but
- **Méthode** : ensemble de règles et pratiques d'ingénierie qui visent à organiser une ou plusieurs étapes du processus
- Outil : élément effectivement manipulable pour réaliser une tâche circonscrite



[Guérineau et al., 2018]


Confronter cette vision « littérature scientifique » aux pratiques industrielles

Analyse des critères de Sélection/adaptation de concepts et techniques manipulés par les entreprises

Structuration des concepts et techniques employés pour le développement multidisciplinaire par les entreprises

Et conclure sur... les limites et adaptation des méthodes agiles

- Un important décalage concernant les techniques et méthodes entre la littérature et les compréhensions / pratiques industrielles
- Limites d'un point de vue scientifique
 - Une seule équipe => distributed
 - De petite taille => *large-scale*

24/11/2020

- Colocalisée => geographically dispersed
- Limites d'un point de vue industriel
 - Folklore vs. changement complet de paradigme
 - Auto-organisation, transparence, confiance, etc.
- Différentes adaptations / hybridations
 - Combinaison d'une approche stage-gate au niveau macro avec une approche agile au niveau micro [Guérineau et al., 2016]
 - \Rightarrow Agile stage gate process ou Agile hybrid
 - Mise en place de Scrum of Scrum (Sos), Agile@Scale

[Goevert & Lindemann, 2018]

Déclinaison des principes fondateurs des méthodes agiles à la conception de produits multidisciplinaires

Troisième approche

Analyse de l'impact des objets intermédiaires sur l'agilisation des méthodes de gestion de projets

- Étude de cas où l'agilité a permis d'obtenir des résultats « probants »
- Analyse du rôle des « objets intermédiaires » au sens de (Vinck, 2011)
 - À l'ère du numérique
 - En contexte de télétravail
 - ...
- ⇒ Travail interdisciplinaire (SPI / SHS Génie Industriel / sociologie) mené par Valentin BERTHOU avec Isabelle CAILLEAU et Hugues CHOPLIN

Conclusion et perspectives

Numérique et agilité Sujets à venir

Conclusion et perspectives

- L'« agile » est très à la mode
 - Compréhension, mises en pratique très différentes
 - Véritable volonté de changement vs. opportunisme managérial
- L'agile très mêlé aujourd'hui avec la transformation numérique
 - Le numérique, un levier de l'agilité ?
- Je préfère...
 - Parler d'agilité et pas de méthodes agiles
 - Conserver les fondements, pas le folklore...
 - Prôner l'appropriation et l'adaptation systématique
- Sujets passionnants à venir
 - Collaboration multidisciplinaire : numérique comme moyen de mesure
 - Ingénierie système vs. agilité : concilier des cadres théoriques qui semblent s'opposer
 - Continuer à transposer des concepts de l'informatique vers l'industrie manufacturière

Bibliographie

Bibliographie

- Beck, K. (2000). Extreme programming explained: embrace change.
- Bricogne, M. (2015). Méthode agile pour la conception collaborative multidisciplinaire de systèmes intégrés : application à la mécatronique [Thèse de doctorat soutenue le 13 février 2015, Université de Technologie de Compiègne et Ecole de Technologie Supérieure de Montréal]. https://doi.org/10.13140/2.1.5158.7362
- Gidel, T., & Zonghero, W. (2020). Management de projet: Tome 1, Introduction et fondamentaux. Hermes Science/Lavoisier.
- Goevert, K., & Lindemann, U. (2018). FURTHER DEVELOPMENT OF AN AGILE TECHNIQUE TOOLBOX FOR MECHATRONIC PRODUCT DEVELOPMENT. 2015–2026. https://doi.org/10.21278/idc.2018.0204
- Guerineau, B., Rivest, L., Bricogne, M., & Durupt, A. (2016). Agile and Project-planned methods in multidisciplinary product design. *The 13th IFIP International Conference on Product Lifecycle Management PLM16*.
- Guérineau, B., Rivest, L., Bricogne, M., Durupt, A., & Eynard, B. (2018). Towards a design-method selection framework for multidisciplinary product development. *International Design Conference, DESIGN2018*, 2879–2890. https://doi.org/10.21278/idc.2018.0431
- Matthews, P., Lomas, C., Armoutis, N.D., Maropoulos, P.G., 2006. Foundations of an agile design methodology. International journal of Agile Manufacturing 9 (1), 29–38.
- Messager-Rota Véronique, Gestion de projet : Vers les méthodes agiles, Eyrolles, 2007
- Moreau Valérie, https://moreauva.scenari-community.org/MP_04-MethodesAgiles_web (super intro/synthèse!)
- Schwaber, K., & Beedle, M. (2001). Agile Software Development With Scrum (U. S. River (ed.)). Prentice-Hall PTR.
- Sommer, A.F., Dukovska-Popovska, I., Steger-Jensen, K., 2014. Agile Product Development Governance On Governing the Emerging Scrum/Stage-Gate Hybrids, in: Grabot, B., Vallespir, B., Gomes, S., Bouras, A., Kiritsis, D. (Eds.), Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World, IFIP Advances in Information and Communication Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 184–191. https://doi.org/10.1007/978-3-662-44739-0
- Sommerville, I., 2010. Software Engineering. Addison Wesley; 9 edition (March 13, 2010), New York, New York, USA.

