

# 48V Hybridization Of A Mid Size Vehicle Using Electric Motor And Electric Assisted Supercharger

# Abstract

In a context of growing demand for sustainable transportation worldwide, different technical solutions for hybrid vehicles are nowadays investigated as effective ways to improve efficiency of the driveline and thus to reduce CO<sub>2</sub> emissions. As a matter of fact, the CO<sub>2</sub> emission targets set by EU (95 g/km in 2020 and 75 g/km in 2025) are extremely demanding.

In order to reach the 2020 CO<sub>2</sub> emission target with a spark ignition engine, solutions need to be developed (e.g. hybridization) or reinforced (e.g. downsizing). At the same time, no compromise should be done between fuel consumption and fun-to-drive. While turbocharged engines exhibit poor transient performance ("turbo lag"), an electric supercharger allows improving fuel consumption, turbo lag and increasing engine torque at low speed. The subject of this study is to present a cost effective solution package with a gasoline engine, achieving lower CO<sub>2</sub> emissions compared to a state of the art Diesel engine without compromising fun to drive.

### Target

• Baseline: Golf VII 1.6L TDI, a state-of-the-art conventional diesel vehicle

| Cu<br>We<br>(k | ırb<br>ight<br>g) | Power<br>(hp) | Torque<br>(Nm) | Maximum<br>speed<br>(km/h) | 80-120<br>km/h (s) | 30-60<br>km/h (s) | NEDC FC<br>(L/100km) | CO2<br>(g/km) |  |
|----------------|-------------------|---------------|----------------|----------------------------|--------------------|-------------------|----------------------|---------------|--|
| 12             | 95                | 105           | 250            | 192                        | 11.6               | 6.7               | 3.9                  | 99            |  |

- Target those kind of CO<sub>2</sub> figures with a mild-hybrid vehicle (48 Volt) powered by a turbocharged gasoline engine and equipped with a manual transmission.
- Provide better driving performance (fun-to-drive) by adopting an electric-assisted supercharger (eSC).

# **Benchmark (C-segment)**

|   | Diesel                                      | Gasoline                         | Hybrid                     |
|---|---------------------------------------------|----------------------------------|----------------------------|
| Α | Golf VII<br>1.6 TDI                         | Peugeot 308 II<br>1.2 THP        | Toyota Auris<br>136h       |
| В | Peugeot 308<br>Blue HDI 120                 | Ford Focus III 1.0<br>Ecoboost   | Peugeot<br>3008<br>Hybrid4 |
| С | Alpha Romeo<br>Giullietta 1.6<br>JTDM-2 105 | Renault Mégane<br>Energy TCe 130 | Honda<br>Insight II        |

|   | Fuel Consumption and C |   |          |          |          |    |          | CC       |          |  |
|---|------------------------|---|----------|----------|----------|----|----------|----------|----------|--|
|   | 6                      |   |          |          |          |    |          |          | 124      |  |
|   | 5                      |   |          |          |          | 1: | 10       | 114      | A        |  |
|   | 4                      |   | 99<br>•  | 1        | .04      |    |          |          |          |  |
|   | 3                      |   |          |          |          |    |          |          |          |  |
| 5 | 2                      |   |          |          |          |    |          |          |          |  |
|   | 1                      | / | 3.9<br>A | 3.2<br>B | 4.0<br>C |    | 4.8<br>A | 5.0<br>B | 5.4<br>C |  |
|   | -                      |   |          |          |          |    | )        |          |          |  |

GASOLINE DIESEL

## **Engine Selection & Optimization**

| IC Engine                                                                                                                                                                           | 1.6L 4 cylinders<br>Turbocharged                                                                     | Specific Torque                |            | ownsized         |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------|------------|------------------|-----------------------------|
| Max Torque<br>[Nm/L]                                                                                                                                                                | 170.9                                                                                                |                                | to 1       | ownsized<br>L.2L |                             |
| Max Power<br>[kW/L]                                                                                                                                                                 | 67.3                                                                                                 |                                |            |                  |                             |
| <ul> <li><u>3-cyclinders I</u></li> <li>S/B ratio for<br/>gasoline eng</li> <li>Exhaust gas I<br/>the fuel ener</li> <li>Constant me<br/>temperature</li> <li>BMEP uncha</li> </ul> | Implementation<br>mptions:<br>conventional<br>ines = 0.8<br>osses = 30 % of<br>gy<br>an wall<br>nged |                                |            |                  | $\dot{Q} = h * A * (T_{c})$ |
| <ul> <li>✓ 2.75% gain in f</li> <li>consumption</li> </ul>                                                                                                                          | fuel                                                                                                 | 9.15 % reduction transfer area | on in heat |                  | 3 cylinde<br>implementa     |

Team Members: Thomas REDLINGER, Shixiong ZHAO, Aggelos ZOUFIOS, Stanish GUNASEKARAN





Special thanks go to Mr Sebastien Potteau from Valeo and Mr Prakash Dewangan from IFP School for their continuous support and availability.

|   | Diesel |  |
|---|--------|--|
| ) | 12 700 |  |
| ) | 5      |  |
|   | 1.17   |  |
| ) | 3.9    |  |

|   | Cost Calculation         | Gas Hybrid             | Diesel |  |
|---|--------------------------|------------------------|--------|--|
|   | Insurance (€/year)       | 385                    | 550    |  |
| • | Maintenance (€/year)     | 900                    | 1000   |  |
|   | Fuel consumption (€/year | ) 605                  | 560    |  |
|   | Total cost (€/5years)    | 9 450                  | 10 550 |  |
|   | (110                     | (1100€/5vears Savings) |        |  |